Process Controllers and Simulators

Topic 1

Introduction to Process Control Systems

Course structure

- 1. Introduction
- 2. Architecture of Computer Control Systems
- 3. Organization and structure of computers for control purposes
- 4. Basic control algorithms
- 5. Real-Time software environment
- 6. SCADA
- Simulators general theory
- 8. Simulators practical aspects
- 9. Simulation of distributed objects and control systems
- 10. Simulators validation
- 11. Real-Time system improvement using simulation environment

Course structure

Chapter		Week														
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Introduction															
		Χ														
2	Architecture of Computer Control Systems															
			Χ													
3	Organization and structure of computers for control purposes															
				Х												
4	Basic control algorithms															
					Х											
5	Real-Time software environment															
						Х	Х									
6	SCADA															
								Х	Х							
7	Simulators – general theory															
										Х	Х					
8	Simulators – practical aspects															
												Х	Х			
9	Simulation of distributed objects and control systems															
														Х		
10	Simulators validation															
															Х	
11	Real-Time systen	n impi	rovem	nent u	sing s	simula	ition e	nviro	nment	t						
																Х
																• •

Introduction

- ♦ A modern society and Industrial Control Systems
- ♦ Characterization of Industrial Control Systems
- Software engineering for Industrial Control Systems

History of development

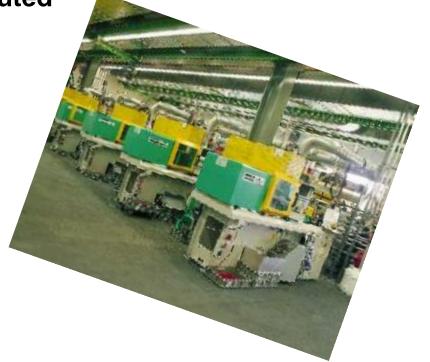
1. Early digital computers

- data acquisition systems;
- supervisory control systems;
- dedicated systems using special-purpose equipment

History of development

2. SSI / MSI minicomputer technology:

(DDC) systems



History of development

3. LSI microprocessor technology:

Decentralized and Distributed

Control Systems

History of development

4. VLSI micro-controller technology:

Mechanical and electronic devices with built-in intelligence

History of development

5. Integration of control systems and mechanical components:

▶ Pervasive Mechatronics

History of development

6. Integration of communication and control (pervasive computing):

➤ Distributed embedded systems (e.g. aerospace and automotive systems)

► Integrated plant-wide and company-wide monitoring and control systems

History of development

6. Integration of communication and control (pervasive computing):

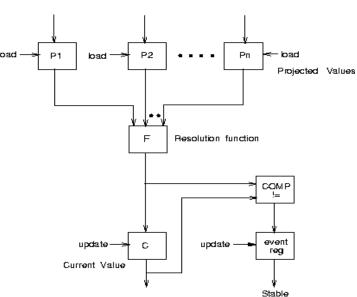
History of development

6. Integration of communication and control (pervasive computing):

► Large-scale command-and-control systems - air-traffic control, military command-and-control systems, etc.

The post-PC era

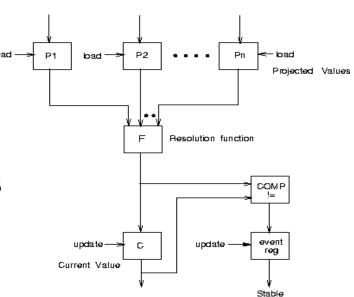
The advent of pervasive computing and pervasive mechatronics.



The post-PC era

Major application areas of modern computer control systems:

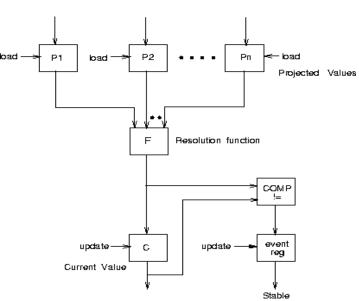
- Military applications
- ▶ Aerospace systems
- ▶ Automotive systems
- Railway transportation
- ▶ Sea transportation



The post-PC era

Major application areas of modern computer control systems:

- ▶ Industrial automation
- ▶ Medical instrumentation
- ▶ Measurement instrumentation
- Materials handling and logistics



The post-PC era

Major application areas of modern computer control systems:

- ► Communication systems
- ▶ Digital TV and audio
- ▶ Home appliances
- Home and office automation

Characterization of ICS

Specific features of ICS

♦ Bepetivetalshestensiems

Industrial Control Systems independs to the interest to the in

♦ Beat-firiteen stlyssey is tems

Checket at the content of the conten

Characterization of ICS

- ♦ Realabed ateritophuen supporting rhot costs autonomous (stand-alone) and distributed
- **Repolitication** to market
- Digherqueality each each ice
 - Sepadensize le operation through reliable and
 - ► RWENTERS SECTION
 - ▶ Prodictablesand suggrapts and seven and seven and seven and seven and seven are seven as the seven are seven are seven as the seven ar hard real-time constraints

 - Open architecture featuring reusable components and software reconfiguration, including in-site and on-line reconfiguration.

м

Classification of ICS

Difference from other computer systems

- ♦ Ameenrbeeded of https://pap@anstraintedies a hypethesis about the world and how the program affects the world.
 - Noise Constraints
 - ► Synchronization Constraints
 - Dependability Constraints
 - ▶ Other physical constrains

Classification of ICS

A partial classification of Industrial Control **Systems:**

- Application and action in sadates a tail unique to the control is a sada
- and control systems Distribution of functions: stand-alone (centralized)
- Deardeine stredizied antiple distribute to design and the content of the content control system: continuous vs. discontinuous (sequential) and hybrid control systems
- Real-time behavior: hard real-time vs. soft real-time systems

×

State-of-the-art Software Technology

- Ad-hoc design and manual coding techniques, i.e. "manufacturing production" of RT control software
- Computer-aided generation of RT control software from high-level specifications
- ♦ Systems and languages supporting limited application / code generation, e.g. standard *IEC 61131-3* and *IEC 61499-3* for industrial applications; special-purpose languages in areas such as aerospace, communications, signal processing, etc.
- Computer-aided code generation from high-level specifications

State-of-the-art software technology

Deficiencies:

- Special-purpose and/or heavyweight solutions that are usually intended for high-end systems and languages.
- Important aspects of real-time operation such as concurrent process execution, process scheduling and schedulability analysis are not adequately supported.
- ♦ Code generation techniques are not flexible enough, i.e. they do not provide adequate support for in-site and on-line reconfiguration (compilation and linking of the generated code is required).

т.

Industrial production of ICS software

 Migration from manufacturing to industrial production methods - a historical perspective (e.g., mechanical engineering and electronics)

Prerequisites:

- introduction of formal (mathematical) analysis and design methods
- standardization of components and production methods
- automation of both design and production

M

The ultimate solution

Industrial production of ICS software: Component-based design of software, i.e.

Migrating from custom design methods and manual computer-aided configuration of ICS using coding / testing process to automated methodologies formal models (frameworks) and pre-fabricated

Standardization of components and production executable components similar to mechanical methods and electronics hardware.

- ♦ Formal methods for design / analyzes / validation.
- Automation of design / implementation / production processes

ye.

Specific problems to be solved

- Formal definition of comprehensive, yet intuitive and easy to use frameworks
- ♦ Formal verification of real-time control systems with respect to functional and/or timing correctness: the divide-and-conquer approach
- Development of application-specific component libraries
- Development of software configuration/generation and analysis tools
- Development of operational software: safe real-time kernels, communication protocols, etc.

The END